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There has always been a strong link between type inference and
unification. Examples go from the seminal works on principal types
for combinatory logic [16, 21] and for the ML programming lan-
guage [17, 28], relying on Robinson unification [31], to general
frameworks such as HM(X) [29]. Here we propose a general frame-
work for type inference for a decidable fragment of intersection
types, relying on set, multiset and sequence unification, dealing
with different algebraic properties of the intersection operator.

Intersection types [8, 13–15] allow the study of normalization
properties of 𝜆-terms under 𝛽-reduction. These systems extend
the Curry type assignment system, allowing multiple types to be
assigned to the same 𝜆-term. This is achieved by the introduction of
the intersection type constructor ∩. Restricting intersection types
to rank-2, i.e. no ∩ occurs to the left of two or more→, is a sensible
decision: systems retain an acceptable level of expressiveness while
also making type inference decidable and simpler.

Several algebraic properties can be conferred to the ∩ construc-
tor: Associativity (A), i.e. 𝜏1 ∩ (𝜏2 ∩ 𝜏3) ≡ (𝜏1 ∩ 𝜏2) ∩ 𝜏3, Commuta-
tivity (C), i.e. 𝜏 ∩ 𝜎 ≡ 𝜎 ∩ 𝜏 , Idempotence (I), i.e. 𝜏 ∩ 𝜏 ≡ 𝜏 , or any
combination of the three. Bestowing or withholding some of these
properties gives rise to different categories of intersection types. In
the original systems [8, 13–15], ∩ is treated as an ACI constructor.
Non-idempotent intersection types [10–12, 20], also called multi
types or quantitative types, with applications to cost models for
𝜆-calculus [1, 3, 9, 24, 25], consider ∩ as an AC constructor. Finally,
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considering ∩ solely as an A constructor gives rise to ordered sys-
tems [2], which ensure an ordering of the occurrences of variables
in the body.

Each category of intersection types behaves as a specific data
structure: ACI intersections behave as sets, AC as multisets and
A as lists, or strings. In fact, these algebraic properties, stated as
axioms, give rise to equational theories. Unification of terms, taking
into account these equational theories, is an established research
field under the name of E-unification. ACI-unification, also called
set unification, has been studied in [18, 19, 26], and shown sound
and complete [19]. AC-unification, also called multiset unification,
is usually reduced to solving diophantine equations and has been
studied in [26], also shown sound and complete. A-unification, also
called string (or word) unification, has been studied in [22, 23, 27, 30,
32] and shown decidable and infinitary [22, 23], i.e. it is possible to
obtain the minimal and complete set of unifiers, even though these
may be infinite. Reviews of these topics can be found in [5–7, 33].

The previous statements suggest that E-unification algorithms
can be incorporated into type inference algorithms for intersection
types, specifically to solve constraints between intersections. The
correspondence between algebraic properties and equational theo-
ries guides this incorporation: set unification can be incorporated in
type inference algorithms for ACI intersections, multiset unification
for AC intersections, and string unification for A intersections. The
results stated previously strengthen these claims, by suggesting
type inference will naturally inherit soundness and completeness
properties of E-unification algorithms.

In fact, previous work of ours [4] has confirmed this for ACI
intersections. For example, for the term (𝜆𝑥 .𝑥𝑥) (𝜆𝑦.𝑦), the follow-
ing constraints are generated: {𝛼1 � 𝛼2 → 𝛼3, 𝛼1 ∧ 𝛼2 � 𝛼5 →
𝛼5 ∧ 𝛼6 → 𝛼6}. Note the second constraint, constraining inter-
section types, can be reduced to solving a set unification problem.
Applying the set unification algorithm from [19], as suggested
in [4], we obtain the following solution: {𝛼5 � 𝛼6 → 𝛼6, 𝛼2 �
𝛼5, 𝛼3 ↦→ 𝛼5, 𝛼1 � 𝛼2 → 𝛼3}. Hence, we uncover the principal
type: ∅ ⊢∧ (𝜆𝑥 . 𝑥 𝑥) (𝜆𝑦 . 𝑦) : 𝛼6 → 𝛼6.

Our goal is then to incorporate E-unification algorithms into
type inference algorithms for intersection types, according to the
different algebraic properties of these. As far as we know, this sort
of approach has not been done for both AC and A intersections.
Afterwards, our goal is to unite these approaches in a single (rank-2
intersection) type inference algorithm, parameterized by the al-
gebraic properties of intersection types. According to the three
different categories, ACI, AC or A, the type inference algorithm
calls the corresponding E-unification algorithm in the type con-
straint solving phase.
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