
Extracting and evolving the Idris core type theory
Justus Matthiesen

mail@justusmatthiesen.com
University of Edinburgh

Idris [2] is an implementation of a dependently-typed pro-

gramming language. Checking a program written in its user-

friendly surface language involves elaboration to a lower

level core type theory. This core type theory is currently

being re-engineered
1
by Edwin Brady and now features ex-

plicit quantity annotations, allowing variables to be marked

as erasable, linear or unrestricted, as well as case trees, first de-
scribed in [6] and later given formal treatment in [4], which

serve as a more convenient elaboration target for functions

defined by dependent pattern matching [5]. A self-standing

type checker for the core itself is also being developed, which

will eventually allow re-checking of elaborated programs.

In this talk, we report on a parallel work-in-progress effort

to extract a set of typing rules
2
for this core type theory

from the Idris code base. The hope is that this project will

aid bug finding, enable meta-theoretic investigations, help

collaborators work on Idris-related projects without having

to delve into the code base, and serve as a basis to explore

extensions to the core type theory.

We can already report some early successes: documenting

Idris’ quantity system helped us uncover and fix a number of

bugs in the linearity checker and having a concise language

description is currently proving to be a useful design tool

in making case trees more expressive by allowing case split-

ting on arbitrary expressions with the end goal of making

dependent pattern matching a first-class citizen.

1 Quantity annotations
Inspired by Quantitative Type Theory [1], Idris’ type system

uses quantity annotations [3] to indicate that a variable in

context maybe be erased (0), must be used exactly once (1),

or can be used arbitrarily (𝜔) at runtime. Quantities form a

semiring with order 0 < 1 < 𝜔 .

More formally, the typing judgement
3 Σ; Γ ⊢ 𝑡 :

𝑝 𝐴

amounts to checking that term 𝑡 has type 𝐴 in context Γ
at ambient quantity 𝑝 with definitions Σ. The ambient quan-

tity behaves much like QTT’s erased/present flag but it also

acts as cost multiplier for variable accesses: suppose we want

to infer the type of an application 𝑓 ·𝜔 𝑡 at ambient quantity 1

and already know that Σ; Γ ⊢ 𝑓 :
1 (𝑥 :

𝜔 𝐴) � 𝐵. We now not

only need to check that argument 𝑡 has type 𝐴 but also that

we are allowed to make 𝜔 copies of 𝑡 . One way to achieve

1
The next iteration is being developed at https://github.com/edwinb/Yaffle.
2
The typing rules are maintained at https://github.com/mjustus/idris-core.

3
We follow Idris in splitting type checking and linearity into two separate

judgements. Type checking only enforces quantity annotations locally but

does not enforce that linear variables are used precisely once globally.

this would be to restrict the context to those variables that

support 𝜔 copies, Σ; Γ \ 𝜔 ⊢ 𝑡 :
1 𝐴, where 𝑝 \ 𝑞 is the re-

striction operation making 𝑝-annotated variables that do not

support at least 𝑞 copies unavailable at runtime

𝑝 \ 𝑞 =

{
𝑝 if 𝑞 ≤ 𝑝

0 otherwise

Idris, however, uses a variable rule that requires any accessed

variable to have quantity larger or equal to the ambient

quantity

(𝑥 :
𝑞 𝐴) ∈ Γ 𝑝 ≤ 𝑞

Σ; Γ ⊢ 𝑥 :
𝑝 𝐴

[Var]

allowing us to use Σ; Γ ⊢ 𝑡 :𝜔 𝐴 instead. In fact, we should

always have

Σ; Γ ⊢ 𝑡 :𝑠 ·𝑝 𝐴 ⇐⇒ Σ; Γ \ 𝑠 ⊢ 𝑡 :𝑝 𝐴

This limited form of subusaging is departure from Atkey’s

presentation of QTT, where usage annotations must always

be precise.

2 Dependent pattern matching
Instead of elaborating functions defined via patternmatching

into a core calculus featuring only eliminators, Idris stops at

case trees as amore natural intermediate language. Case trees

are restricted to splitting only on variables but this simplicity

comes at a cost: case trees do not support a substitution

operation and therefore also have no equational theory. As a

further consequence, case expressions on the right-hand side

and with–abstraction [7] have to be elaborated to top-level

functions, obscuring the structure of the original program

and requiring special treatment in some parts of the code

base, e.g. the termination checker.

To alleviate the issue, we equip each case expression with

a suspended substitution, allowing abstraction before case

splitting and preventing case expressions from commuting

arbitrarily with substitutions.

3 Future work
We plan to use the presented type system to tackle a variety

of projects, including meta-theoretic correctness results for

erasure and linearity annotations, strengthening the equa-

tional theory of pattern matching, exploring primitives for

sparsely manipulating the context and managing dependen-

cies, and bringing observational equality to Idris.

https://github.com/edwinb/Yaffle
https://github.com/mjustus/idris-core


WITS ’23, August 28, 2023, Braga, Portugal Justus Matthiesen

References
[1] Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (Oxford, United Kingdom) (LICS ’18). Association for

Computing Machinery, New York, NY, USA, 56–65. https://doi.org/10.
1145/3209108.3209189

[2] Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-

gramming language: Design and implementation. Journal of Func-
tional Programming 23, 5 (2013), 552–593. https://doi.org/10.1017/
S095679681300018X

[3] Edwin Brady. 2021. Idris 2: Quantitative Type Theory in Practice. In

35th European Conference on Object-Oriented Programming (ECOOP
2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 194),
Anders Møller and Manu Sridharan (Eds.). Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, Dagstuhl, Germany, 9:1–9:26. https://doi.org/

10.4230/LIPIcs.ECOOP.2021.9
[4] Jesper Cockx and Andreas Abel. 2020. Elaborating dependent

(co)pattern matching: No pattern left behind. Journal of Functional
Programming 30 (2020), e2. https://doi.org/10.1017/S0956796819000182

[5] Thierry Coquand. 1992. Pattern Matching with Dependent Types. In

Proceedings of the 1992 Workshop on Types for Proofs and Programs.
Båstad. https://www.cse.chalmers.se/~coquand/pattern.ps

[6] Healfdene Goguen, Conor McBride, and James McKinna. 2006. Elimi-

nating Dependent Pattern Matching. In Algebra, Meaning, and Com-
putation: Essays dedicated to Joseph A. Goguen on the Occasion of
His 65th Birthday, Kokichi Futatsugi, Jean-Pierre Jouannaud, and José

Meseguer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 521–

540. https://doi.org/10.1007/11780274_27
[7] Conor McBride and James McKinna. 2004. The view from the left.

Journal of Functional Programming 14, 1 (2004), 69–111. https://doi.org/
10.1017/S0956796803004829

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1017/S0956796819000182
https://www.cse.chalmers.se/~coquand/pattern.ps
https://doi.org/10.1007/11780274_27
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829

	1 Quantity annotations
	2 Dependent pattern matching
	3 Future work
	References

