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Idris [2] is an implementation of a dependently-typed pro-

gramming language. Checking a program written in its user-

friendly surface language involves elaboration to a lower

level core type theory. This core type theory is currently

being re-engineered
1
by Edwin Brady and now features ex-

plicit quantity annotations, allowing variables to be marked

as erasable, linear or unrestricted, as well as case trees, first de-
scribed in [6] and later given formal treatment in [4], which

serve as a more convenient elaboration target for functions

defined by dependent pattern matching [5]. A self-standing

type checker for the core itself is also being developed, which

will eventually allow re-checking of elaborated programs.

In this talk, we report on a parallel work-in-progress effort

to extract a set of typing rules
2
for this core type theory

from the Idris code base. The hope is that this project will

aid bug finding, enable meta-theoretic investigations, help

collaborators work on Idris-related projects without having

to delve into the code base, and serve as a basis to explore

extensions to the core type theory.

We can already report some early successes: documenting

Idris’ quantity system helped us uncover and fix a number of

bugs in the linearity checker and having a concise language

description is currently proving to be a useful design tool

in making case trees more expressive by allowing case split-

ting on arbitrary expressions with the end goal of making

dependent pattern matching a first-class citizen.

1 Quantity annotations
Inspired by Quantitative Type Theory [1], Idris’ type system

uses quantity annotations [3] to indicate that a variable in

context maybe be erased (0), must be used exactly once (1),

or can be used arbitrarily (𝜔) at runtime. Quantities form a

semiring with order 0 < 1 < 𝜔 .

More formally, the typing judgement
3 Σ; Γ ⊢ 𝑡 :

𝑝 𝐴

amounts to checking that term 𝑡 has type 𝐴 in context Γ
at ambient quantity 𝑝 with definitions Σ. The ambient quan-

tity behaves much like QTT’s erased/present flag but it also

acts as cost multiplier for variable accesses: suppose we want

to infer the type of an application 𝑓 ·𝜔 𝑡 at ambient quantity 1

and already know that Σ; Γ ⊢ 𝑓 :
1 (𝑥 :

𝜔 𝐴) � 𝐵. We now not

only need to check that argument 𝑡 has type 𝐴 but also that

we are allowed to make 𝜔 copies of 𝑡 . One way to achieve

1
The next iteration is being developed at https://github.com/edwinb/Yaffle.
2
The typing rules are maintained at https://github.com/mjustus/idris-core.

3
We follow Idris in splitting type checking and linearity into two separate

judgements. Type checking only enforces quantity annotations locally but

does not enforce that linear variables are used precisely once globally.

this would be to restrict the context to those variables that

support 𝜔 copies, Σ; Γ \ 𝜔 ⊢ 𝑡 :
1 𝐴, where 𝑝 \ 𝑞 is the re-

striction operation making 𝑝-annotated variables that do not

support at least 𝑞 copies unavailable at runtime

𝑝 \ 𝑞 =

{
𝑝 if 𝑞 ≤ 𝑝

0 otherwise

Idris, however, uses a variable rule that requires any accessed

variable to have quantity larger or equal to the ambient

quantity

(𝑥 :
𝑞 𝐴) ∈ Γ 𝑝 ≤ 𝑞

Σ; Γ ⊢ 𝑥 :
𝑝 𝐴

[Var]

allowing us to use Σ; Γ ⊢ 𝑡 :𝜔 𝐴 instead. In fact, we should

always have

Σ; Γ ⊢ 𝑡 :𝑠 ·𝑝 𝐴 ⇐⇒ Σ; Γ \ 𝑠 ⊢ 𝑡 :𝑝 𝐴

This limited form of subusaging is departure from Atkey’s

presentation of QTT, where usage annotations must always

be precise.

2 Dependent pattern matching
Instead of elaborating functions defined via patternmatching

into a core calculus featuring only eliminators, Idris stops at

case trees as amore natural intermediate language. Case trees

are restricted to splitting only on variables but this simplicity

comes at a cost: case trees do not support a substitution

operation and therefore also have no equational theory. As a

further consequence, case expressions on the right-hand side

and with–abstraction [7] have to be elaborated to top-level

functions, obscuring the structure of the original program

and requiring special treatment in some parts of the code

base, e.g. the termination checker.

To alleviate the issue, we equip each case expression with

a suspended substitution, allowing abstraction before case

splitting and preventing case expressions from commuting

arbitrarily with substitutions.

3 Future work
We plan to use the presented type system to tackle a variety

of projects, including meta-theoretic correctness results for

erasure and linearity annotations, strengthening the equa-

tional theory of pattern matching, exploring primitives for

sparsely manipulating the context and managing dependen-

cies, and bringing observational equality to Idris.

https://github.com/edwinb/Yaffle
https://github.com/mjustus/idris-core
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