
An Implementation Strategy for Gradual Dependent
Types

Joseph Eremondi
University of Edinburgh

United Kingdom
joey.eremondi@ed.ac.uk

1 Why Gradual Dependent Types?
Dependent type systems allow programmers to use types to
express rich specifications along with proofs that the pro-
grams meet those specifications. However, actually writing
programs that meet these specifications can be difficult.

Gradual dependent types introduce a degree of flexibility
into a dependent type system.With gradual dependent types,
parts of terms or types can be omitted. Types are compared
for consistency relative to available information, and run-
time checks are inserted to replace static checks deferred
due to imprecision.
Gradual dependent types help with developing depen-

dently typed programs in two ways. First, they provide a
dynamic semantics for programs holes. Languages like Agda
and Idris already allow parts of a type or proof to be omit-
ted. Gradual dependent types go further by allowing such
programs to be safely run. Second, gradual dependent types
provide a smooth path for migrating non-dependently typed
code to dependent languages, and to safely interacting with
non-dependent code via an FFI.

Our hypothesis is that dynamic information from running
a program is useful for constructing static proofs in depen-
dently typed languages. However, to test this conjecture, we
need an implementation of gradual dependent types.

2 Implementing Gradual Dependent Types
2.1 Implemenetation Challenges
There are many complex parts of a compiler for a depen-
dently typed language. Because terms serve a double purpose
as proofs, dependently typed programs often contain terms
that serve no purpose at run time but exist to satisfy the
type checker. So code practical generation requires heavy
optimization.
Additionally, conversion checking is a major part of de-

pendent type checking. Because types may depend on terms,
comparing the equality of two types checks if they are con-
vertible, i.e. have the same normal form. The naive approach
of normalizing then comparing types is correct but slow, and
efficient conversion checkers rely on many subtle tricks.

Implementing these tools is difficult and time consuming,
even for non-gradual dependent types. With gradual depen-
dent types, these tools must work in settings where precise
types for terms may not be known, where termination is not

guaranteed, and where dynamic checks must be added to
ensure safety.

2.2 Implementation via Translation
We propose an implementation strategy for gradual depen-
dent types where, instead of implementing a compiler di-
rectly, gradual dependent types are translated into static de-
pendent types. Under this approach, a compiler for gradual
dependent types can re-use conversion checking, optimiza-
tion, and normalization from the static language. The transla-
tion is based on the syntactic model of Lennon-Bertrand et al.
[5], extended with the techniques developed in [4]. A proof
of concept for the translation has been written in Agda [1].

2.2.1 Termination. Amajor challenge with this approach
is balancing the possibility for non-terimating gradual pro-
grams with the termination requirements of static dependent
types systems. MLTT and CIC, upon which most proof assis-
tants are based, both disallow non-terminating programs. Im-
plementations of dependent types typically include “escape
hatches” which can circumvent the termination checker, but
these either allow for non-termination during type checking
or limit the extent to which terms can be evaluated during
conversion checking.

We instead follow the approach of [3], where conversion
checks are performed on approximate versions of terms.
These approximate terms lie in a terminating fragment of
gradual dependent types, and hence can be embedded in a
static dependently typed language without using any special
features.

2.2.2 Equality. The second major challenge is finding a
suitable gradual representation of propositional equality. The
theory of gradual propositional equality is developed in [2],
representing equality proofs between two terms with wit-
nesses as precise as those two terms. However, this intro-
duces a mutual dependency between the operations that con-
vert between types and compose run-time type information.
In order to represent gradual equality proofs, our translation
to static types relies on a bespoke library of ordinals to prove
these operations terminate.

References
[1] Joseph Eremondi. 2023. Github Repository: Guarded Model of Gradual

Dependent Types. https://github.com/JoeyEremondi/GuardedModel/
tree/externalReview/model.

https://github.com/JoeyEremondi/GuardedModel/tree/externalReview/model
https://github.com/JoeyEremondi/GuardedModel/tree/externalReview/model


WITS ’23, August 28, 2023, Braga, Portugal Joseph Eremondi

[2] Joseph Eremondi, Ronald Garcia, and Éric Tanter. 2022. Propositional
Equality for Gradual Dependently Typed Programming. Proc. ACM
Program. Lang. 6, ICFP, Article 96 (August 2022), 29 pages. https:
//doi.org/10.1145/3547627

[3] Joseph Eremondi, Éric Tanter, and Ronald Garcia. 2019. Approximate
Normalization for Gradual Dependent Types. Proc. ACM Program.
Lang. 3, ICFP, Article 88 (July 2019), 30 pages. https://doi.org/10.1145/
3341692

[4] Joseph S. Eremondi. 2023. On the design of a gradual dependently typed

language for programming. Ph. D. Dissertation. University of
British Columbia. https://doi.org/10.14288/1.0428823

[5] Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric
Tanter. 2022. Gradualizing the Calculus of Inductive Constructions.
ACM Trans. Program. Lang. Syst. 44, 2, Article 7 (apr 2022), 82 pages.
https://doi.org/10.1145/3495528

https://doi.org/10.1145/3547627
https://doi.org/10.1145/3547627
https://doi.org/10.1145/3341692
https://doi.org/10.1145/3341692
https://doi.org/10.14288/1.0428823
https://doi.org/10.1145/3495528

	1 Why Gradual Dependent Types?
	2 Implementing Gradual Dependent Types
	2.1 Implemenetation Challenges
	2.2 Implementation via Translation

	References

