
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Rank-2 Intersection Type Inference Revisited
Pedro Ângelo

pedro.angelo@fc.up.pt
LIACC, Departamento de Ciência de Computadores,

Faculdade de Ciências, Universidade do Porto,
rua do Campo Alegre s/n, 4169 - 007

Porto, Portugal

Mário Florido
amflorid@fc.up.pt

LIACC, Departamento de Ciência de Computadores,
Faculdade de Ciências, Universidade do Porto,

rua do Campo Alegre s/n, 4169 - 007
Porto, Portugal

KEYWORDS
intersection types, E-unification, type inference

ACM Reference Format:
Pedro Ângelo and Mário Florido. 2023. Rank-2 Intersection Type Inference
Revisited. In Proceedings of Workshop on the Implementation of Type Systems
(WITS ’23). ACM, New York, NY, USA, 2 pages. https://doi.org/XXXXXXX.
XXXXXXX

There has always been a strong link between type inference and
unification. Examples go from the seminal works on principal types
for combinatory logic [16, 21] and for the ML programming lan-
guage [17, 28], relying on Robinson unification [31], to general
frameworks such as HM(X) [29]. Here we propose a general frame-
work for type inference for a decidable fragment of intersection
types, relying on set, multiset and sequence unification, dealing
with different algebraic properties of the intersection operator.

Intersection types [8, 13–15] allow the study of normalization
properties of _-terms under 𝛽-reduction. These systems extend
the Curry type assignment system, allowing multiple types to be
assigned to the same _-term. This is achieved by the introduction of
the intersection type constructor ∩. Restricting intersection types
to rank-2, i.e. no ∩ occurs to the left of two or more→, is a sensible
decision: systems retain an acceptable level of expressiveness while
also making type inference decidable and simpler.

Several algebraic properties can be conferred to the ∩ construc-
tor: Associativity (A), i.e. 𝜏1 ∩ (𝜏2 ∩ 𝜏3) ≡ (𝜏1 ∩ 𝜏2) ∩ 𝜏3, Commuta-
tivity (C), i.e. 𝜏 ∩ 𝜎 ≡ 𝜎 ∩ 𝜏 , Idempotence (I), i.e. 𝜏 ∩ 𝜏 ≡ 𝜏 , or any
combination of the three. Bestowing or withholding some of these
properties gives rise to different categories of intersection types. In
the original systems [8, 13–15], ∩ is treated as an ACI constructor.
Non-idempotent intersection types [10–12, 20], also called multi
types or quantitative types, with applications to cost models for
_-calculus [1, 3, 9, 24, 25], consider ∩ as an AC constructor. Finally,

This work was partially financially supported by the portuguese Fundação para a
Ciência e a Tecnologia, under the PhD grant number SFRH/BD/145183/2019 and by
Base Funding - UIDB/00027/2020 of the Artificial Intelligence and Computer Science
Laboratory – LIACC - funded by national funds through the FCT/MCTES (PIDDAC).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WITS ’23, August 28, 2023, Braga, Portugal
© 20123 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

considering ∩ solely as an A constructor gives rise to ordered sys-
tems [2], which ensure an ordering of the occurrences of variables
in the body.

Each category of intersection types behaves as a specific data
structure: ACI intersections behave as sets, AC as multisets and
A as lists, or strings. In fact, these algebraic properties, stated as
axioms, give rise to equational theories. Unification of terms, taking
into account these equational theories, is an established research
field under the name of E-unification. ACI-unification, also called
set unification, has been studied in [18, 19, 26], and shown sound
and complete [19]. AC-unification, also called multiset unification,
is usually reduced to solving diophantine equations and has been
studied in [26], also shown sound and complete. A-unification, also
called string (or word) unification, has been studied in [22, 23, 27, 30,
32] and shown decidable and infinitary [22, 23], i.e. it is possible to
obtain the minimal and complete set of unifiers, even though these
may be infinite. Reviews of these topics can be found in [5–7, 33].

The previous statements suggest that E-unification algorithms
can be incorporated into type inference algorithms for intersection
types, specifically to solve constraints between intersections. The
correspondence between algebraic properties and equational theo-
ries guides this incorporation: set unification can be incorporated in
type inference algorithms for ACI intersections, multiset unification
for AC intersections, and string unification for A intersections. The
results stated previously strengthen these claims, by suggesting
type inference will naturally inherit soundness and completeness
properties of E-unification algorithms.

In fact, previous work of ours [4] has confirmed this for ACI
intersections. For example, for the term (_𝑥 .𝑥𝑥) (_𝑦.𝑦), the follow-
ing constraints are generated: {𝛼1 � 𝛼2 → 𝛼3, 𝛼1 ∧ 𝛼2 � 𝛼5 →
𝛼5 ∧ 𝛼6 → 𝛼6}. Note the second constraint, constraining inter-
section types, can be reduced to solving a set unification problem.
Applying the set unification algorithm from [19], as suggested
in [4], we obtain the following solution: {𝛼5 � 𝛼6 → 𝛼6, 𝛼2 �
𝛼5, 𝛼3 ↦→ 𝛼5, 𝛼1 � 𝛼2 → 𝛼3}. Hence, we uncover the principal
type: ∅ ⊢∧ (_𝑥 . 𝑥 𝑥) (_𝑦 . 𝑦) : 𝛼6 → 𝛼6.

Our goal is then to incorporate E-unification algorithms into
type inference algorithms for intersection types, according to the
different algebraic properties of these. As far as we know, this sort
of approach has not been done for both AC and A intersections.
Afterwards, our goal is to unite these approaches in a single (rank-2
intersection) type inference algorithm, parameterized by the al-
gebraic properties of intersection types. According to the three
different categories, ACI, AC or A, the type inference algorithm
calls the corresponding E-unification algorithm in the type con-
straint solving phase.

1

https://orcid.org/0000-0002-7849-195X
https://orcid.org/0000-0002-0574-7555
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WITS ’23, August 28, 2023, Braga, Portugal P. Ângelo and M. Florido

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

REFERENCES
[1] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. 2018. Tight

Typings and Split Bounds. Proc. ACM Program. Lang. 2, ICFP, Article 94 (jul
2018), 30 pages. https://doi.org/10.1145/3236789

[2] Sandra Alves and Mário Florido. 2022. Structural Rules and Algebraic Properties
of Intersection Types. In Theoretical Aspects of Computing – ICTAC 2022, Hel-
mut Seidl, Zhiming Liu, and Corina S. Pasareanu (Eds.). Springer International
Publishing, Cham, 60–77. https://doi.org/10.1007/978-3-031-17715-6_6

[3] Sandra Alves, Delia Kesner, and Daniel Ventura. 2020. A Quantitative Un-
derstanding of Pattern Matching. In 25th International Conference on Types
for Proofs and Programs (TYPES 2019) (Leibniz International Proceedings in In-
formatics (LIPIcs), Vol. 175), Marc Bezem and Assia Mahboubi (Eds.). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 3:1–3:36. https:
//doi.org/10.4230/LIPIcs.TYPES.2019.3

[4] Pedro Ângelo and Mário Florido. 2022. Type Inference for Rank-2 Intersection
Types Using Set Unification. In Theoretical Aspects of Computing – ICTAC 2022,
Helmut Seidl, Zhiming Liu, and Corina S. Pasareanu (Eds.). Springer International
Publishing, Cham, 462–480. https://doi.org/10.1007/978-3-031-17715-6_29

[5] Franz Baader and Tobias Nipkow. 1998. Term Rewriting and All That. Cambridge
University Press. https://doi.org/10.1017/CBO9781139172752

[6] Franz Baader and Jörg H. Siekmann. 1994. Unification Theory. Oxford University
Press, Inc., USA, 41–125.

[7] Franz Baader, Wayne Snyder, Paliath Narendran, Manfred Schmidt-Schauss,
and Klaus Schulz. 2001. Chapter 8 - Unification Theory. In Handbook of Auto-
mated Reasoning, Alan Robinson and Andrei Voronkov (Eds.). North-Holland,
Amsterdam, 445–533. https://doi.org/10.1016/B978-044450813-3/50010-2

[8] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A
filter lambdamodel and the completeness of type assignment. Journal of Symbolic
Logic 48, 4 (1983), 931–940. https://doi.org/10.2307/2273659

[9] Alexis Bernadet and Stéphane Lengrand. 2011. Complexity of Strongly Nor-
malising _-Terms via Non-idempotent Intersection Types. In Foundations of
Software Science and Computational Structures, Martin Hofmann (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 88–107. https://doi.org/10.1007/978-3-
642-19805-2_7

[10] Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. 2018. Inhabita-
tion for Non-idempotent Intersection Types. Logical Methods in Computer Science
Volume 14, Issue 3 (Aug. 2018). https://doi.org/10.23638/LMCS-14(3:7)2018

[11] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. 2017. Non-
idempotent intersection types for the Lambda-Calculus. Logic
Journal of the IGPL 25, 4 (07 2017), 431–464. https://doi.org/
10.1093/jigpal/jzx018 arXiv:https://academic.oup.com/jigpal/article-
pdf/25/4/431/19368065/jzx018.pdf

[12] Daniel de Carvalho. 2007. Sémantiques de la logique linéaire et temps de cal-
cul. Ph. D. Dissertation. http://www.theses.fr/2007AIX22066 Thèse de doc-
torat dirigée par Ehrhard, Thomas Mathématiques discrètes et fondements de
l’informatique Aix-Marseille 2 2007.

[13] Mario Coppo and Mariangiola Dezani-Ciancaglini. 1980. An extension of the
basic functionality theory for the _-calculus. Notre Dame Journal of Formal Logic
21, 4 (10 1980), 685–693. https://doi.org/10.1305/ndjfl/1093883253

[14] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1980. Principal
Type Schemes and Lambda-calculus Semantics. In To H.B.Curry: Essays on
Combinatory Logic, Lambda-calculus and Formalism. Academic Press, 535–560.
http://www.di.unito.it/~dezani/papers/CDV80.pdf

[15] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1981.
Functional Characters of Solvable Terms. Mathematical Logic Quar-
terly 27, 2-6 (1981), 45–58. https://doi.org/10.1002/malq.19810270205
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19810270205

[16] Haskell B. Curry. 1969. Modified basic functionality in combinatory logic. Di-
alectica 23, 2 (1969), 83–92.

[17] Luis Damas and Robin Milner. 1982. Principal Type-schemes for Functional Pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Albuquerque, New Mexico) (POPL ’82). ACM, New
York, NY, USA, 207–212. https://doi.org/10.1145/582153.582176

[18] Agostino Dovier, Eugenio Omodeo, Enrico Pontelli, and Gianfranco Rossi. 1996.
A Language for Programming in Logic with Finite Sets. J. Log. Program. 28 (01
1996), 1–44.

[19] Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. 2006. Set unification.
Theory and Practice of Logic Programming 6, 6 (2006), 645–701. https://doi.org/
10.1017/S1471068406002730

[20] Philippa Gardner. 1994. Discovering needed reductions using type theory. In
Theoretical Aspects of Computer Software, Masami Hagiya and John C. Mitchell
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 555–574. https://doi.org/
10.1007/3-540-57887-0_115

[21] R. Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic.
Trans. Amer. Math. Soc. 146 (1969), 29–60.

[22] Michael Hoche, Jörg Siekmann, and Peter Szabo. 2008. String unification is
essentially infinitary. https://doi.org/10.22028/D291-25201

[23] Joxan Jaffar. 1990. Minimal and Complete Word Unification. J. ACM 37, 1 (jan
1990), 47–85. https://doi.org/10.1145/78935.78938

[24] Delia Kesner and Daniel Ventura. 2014. Quantitative Types for the Linear Substi-
tution Calculus. In Theoretical Computer Science, Josep Diaz, Ivan Lanese, and
Davide Sangiorgi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 296–310.
https://doi.org/10.1007/978-3-662-44602-7_23

[25] Delia Kesner and Pierre Vial. 2020. Non-idempotent types for classical calculi in
natural deduction style. Logical Methods in Computer Science Volume 16, Issue 1
(Jan. 2020). https://doi.org/10.23638/LMCS-16(1:3)2020

[26] M. Livesey and Jörg Siekmann. 1976. Unification of sets and multisets. https:
//doi.org/10.22028/D291-36868

[27] G S Makanin. 1977. THE PROBLEM OF SOLVABILITY OF EQUATIONS IN
A FREE SEMIGROUP. Mathematics of the USSR-Sbornik 32, 2 (feb 1977), 129.
https://doi.org/10.1070/SM1977v032n02ABEH002376

[28] Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput.
System Sci. 17, 3 (1978), 348 – 375. https://doi.org/10.1016/0022-0000(78)90014-4

[29] Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type Inference with
Constrained Types. Theor. Pract. Object Syst. 5, 1 (Jan. 1999), 35–55. https://doi.
org/10.1002/(SICI)1096-9942(199901/03)5:1%3C35::AID-TAPO4%3E3.0.CO;2-4

[30] Wojciech Plandowski. 2004. Satisfiability of Word Equations with Constants is
in PSPACE. J. ACM 51, 3 (may 2004), 483–496. https://doi.org/10.1145/990308.
990312

[31] J. A. Robinson. 1965. AMachine-Oriented Logic Based on the Resolution Principle.
J. ACM 12, 1 (Jan. 1965), 23–41. https://doi.org/10.1145/321250.321253

[32] Klaus U. Schulz. 1992. Makanin’s algorithm for word equations-two im-
provements and a generalization. In Word Equations and Related Topics, K. U.
Schulz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 85–150. https:
//doi.org/10.1007/3-540-55124-7_4

[33] Jörg H. Siekmann. 1989. Unification theory. Journal of Symbolic Computation 7,
3 (1989), 207–274. https://doi.org/10.1016/S0747-7171(89)80012-4 Unification:
Part 1.

2

https://doi.org/10.1145/3236789
https://doi.org/10.1007/978-3-031-17715-6_6
https://doi.org/10.4230/LIPIcs.TYPES.2019.3
https://doi.org/10.4230/LIPIcs.TYPES.2019.3
https://doi.org/10.1007/978-3-031-17715-6_29
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1016/B978-044450813-3/50010-2
https://doi.org/10.2307/2273659
https://doi.org/10.1007/978-3-642-19805-2_7
https://doi.org/10.1007/978-3-642-19805-2_7
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://arxiv.org/abs/https://academic.oup.com/jigpal/article-pdf/25/4/431/19368065/jzx018.pdf
https://arxiv.org/abs/https://academic.oup.com/jigpal/article-pdf/25/4/431/19368065/jzx018.pdf
http://www.theses.fr/2007AIX22066
https://doi.org/10.1305/ndjfl/1093883253
http://www.di.unito.it/~dezani/papers/CDV80.pdf
https://doi.org/10.1002/malq.19810270205
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19810270205
https://doi.org/10.1145/582153.582176
https://doi.org/10.1017/S1471068406002730
https://doi.org/10.1017/S1471068406002730
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.22028/D291-25201
https://doi.org/10.1145/78935.78938
https://doi.org/10.1007/978-3-662-44602-7_23
https://doi.org/10.23638/LMCS-16(1:3)2020
https://doi.org/10.22028/D291-36868
https://doi.org/10.22028/D291-36868
https://doi.org/10.1070/SM1977v032n02ABEH002376
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1%3C35::AID-TAPO4%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1%3C35::AID-TAPO4%3E3.0.CO;2-4
https://doi.org/10.1145/990308.990312
https://doi.org/10.1145/990308.990312
https://doi.org/10.1145/321250.321253
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1016/S0747-7171(89)80012-4

	References

