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Abstract
When implementing type inference for a dependent type
system, one of the cornerstones is higher-order unification.
Even though many such algorithms exist, state-of-the-art is
implementing it directly for a particular proof assistant. We
propose an approach inspired by second-order abstract syn-
tax of Fiore, data types là carte of Swierstra, and instrinsic
scoping of Bird and Patterson. Our approach allows to han-
dle scopes in a language-agnostic way and provide generic
higher-order unification algorithms, which then can serve
as foundation for the implementation of dependent type in-
ference.

Keywords: second-order abstract syntax, equational unifi-
cation, algebraic data type

To reduce explicit types in proofs involving dependent types,
a proof assistant requires type inference, which in turn of-
ten relies on higher-order unification. Many unification al-
gorithms exist [4, 8, 10], but implementing them requires
extra effort and is often error-prone. For these reasons, in
prototype implementations type inference is often omitted
or reduced, as developers opt out for a more straightfor-
ward implementationwhile limiting the capabilities of a pro-
totype. At the same time, in a sufficiently complex depen-
dently typed language, even small examples can be challeng-
ing to comprehend without some type inference.

In his 2001 pearl [9], Sheard described an efficient and
modularized implementation of single-sorted first-order uni-
fication. Wren Romano has implemented this approach in
the Haskell programming language as the unification-fd
library. Romano’s implementation alsomixeswell with Swier-
stra’s data types à la carte [11]: termswithmetavariables are
constructed using free monads.

Free monad construction is a common technique for mod-
eling side effects (e.g., input/output) in embedded domain-
specific languages [12, 13]. However, they are also used to
generate abstract syntax trees for terms [11], where themonadic
binding operation corresponds to a substitution of variables.
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Such representation allows for more flexibility in terms of
modular extensions to the language of terms and annota-
tions (such as source code location or types).
Unfortunately, free monads cannot be used directly for

higher-order unification, as we have to take extra care of the
bound variables. For expressions with scopes (such as let-
expressions or 𝜆-abstractions), substitution (implementedman-
ually or via free monads) is not safe by default since a name
capture might happen. To avoid this, de Bruijn indices [1]
are commonly used in practice. However, recently gener-
alized de Bruijn indices1 have also been used (e.g. in Epi-
gram [7]) to keep track of scoping in types and also to allow
lifting entire subexpressions to optimize substitutions fur-
ther.

Second-order abstract syntax [2, 3] has proven useful when
working with languages with arbitrary binding construc-
tions. Moreover, higher-order unification can be expressed
as a special case of equational unification for second-order
abstract syntax [6].
We present a work-in-progress on an approach to spec-

ification of abstract syntax in Haskell that combines fea-
tures of second-order abstract syntax of Fiore, data types à
la carte of Swierstra, and intrinsic scoping of Bird and Patter-
son, allowing us to work comfortably with the syntax tree
while also being able to derive a higher-order unification al-
gorithm for such syntax, given reduction rules or a set of
equations.
Earlier version of the approach [5] with heuristics based

onHuet’s pre-unification algorithm [4] has been implemented
in the first version of a prototype proof assistant RzK (tag
v0.1.02).
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