
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Deriving Higher-Order Unification in Haskell
Anonymous Author(s)

Abstract
When implementing type inference for a dependent type
system, one of the cornerstones is higher-order unification.
Even though many such algorithms exist, state-of-the-art is
implementing it directly for a particular proof assistant. We
propose an approach inspired by second-order abstract syn-
tax of Fiore, data types là carte of Swierstra, and instrinsic
scoping of Bird and Patterson. Our approach allows to han-
dle scopes in a language-agnostic way and provide generic
higher-order unification algorithms, which then can serve
as foundation for the implementation of dependent type in-
ference.

Keywords: second-order abstract syntax, equational unifi-
cation, algebraic data type

To reduce explicit types in proofs involving dependent types,
a proof assistant requires type inference, which in turn of-
ten relies on higher-order unification. Many unification al-
gorithms exist [4, 8, 10], but implementing them requires
extra effort and is often error-prone. For these reasons, in
prototype implementations type inference is often omitted
or reduced, as developers opt out for a more straightfor-
ward implementationwhile limiting the capabilities of a pro-
totype. At the same time, in a sufficiently complex depen-
dently typed language, even small examples can be challeng-
ing to comprehend without some type inference.

In his 2001 pearl [9], Sheard described an efficient and
modularized implementation of single-sorted first-order uni-
fication. Wren Romano has implemented this approach in
the Haskell programming language as the unification-fd
library. Romano’s implementation alsomixeswell with Swier-
stra’s data types à la carte [11]: termswithmetavariables are
constructed using free monads.

Free monad construction is a common technique for mod-
eling side effects (e.g., input/output) in embedded domain-
specific languages [12, 13]. However, they are also used to
generate abstract syntax trees for terms [11], where themonadic
binding operation corresponds to a substitution of variables.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06…$15.00
https://doi.org/XXXXXXX.XXXXXXX

Such representation allows for more flexibility in terms of
modular extensions to the language of terms and annota-
tions (such as source code location or types).
Unfortunately, free monads cannot be used directly for

higher-order unification, as we have to take extra care of the
bound variables. For expressions with scopes (such as let-
expressions or 𝜆-abstractions), substitution (implementedman-
ually or via free monads) is not safe by default since a name
capture might happen. To avoid this, de Bruijn indices [1]
are commonly used in practice. However, recently gener-
alized de Bruijn indices1 have also been used (e.g. in Epi-
gram [7]) to keep track of scoping in types and also to allow
lifting entire subexpressions to optimize substitutions fur-
ther.

Second-order abstract syntax [2, 3] has proven useful when
working with languages with arbitrary binding construc-
tions. Moreover, higher-order unification can be expressed
as a special case of equational unification for second-order
abstract syntax [6].
We present a work-in-progress on an approach to spec-

ification of abstract syntax in Haskell that combines fea-
tures of second-order abstract syntax of Fiore, data types à
la carte of Swierstra, and intrinsic scoping of Bird and Patter-
son, allowing us to work comfortably with the syntax tree
while also being able to derive a higher-order unification al-
gorithm for such syntax, given reduction rules or a set of
equations.
Earlier version of the approach [5] with heuristics based

onHuet’s pre-unification algorithm [4] has been implemented
in the first version of a prototype proof assistant RzK (tag
v0.1.02).

References
[1] N.G de Bruijn. 1972. Lambda calculus notation with nameless dum-

mies, a tool for automatic formula manipulation, with application to
the Church-Rosser theorem. Indagationes Mathematicae (Proceedings)
75, 5 (1972), 381–392. https://doi.org/10.1016/1385-7258(72)90034-0

[2] Marcelo Fiore and Chung-Kil Hur. 2010. Second-Order Equational
Logic (Extended Abstract). In Computer Science Logic, 24th Interna-
tional Workshop, CSL 2010, 19th Annual Conference of the EACSL,
Brno, Czech Republic, August 23-27, 2010. Proceedings (Lecture Notes
in Computer Science, Vol. 6247), Anuj Dawar and Helmut Veith (Eds.).
Springer, 320–335. https://doi.org/10.1007/978-3-642-15205-4_26

[3] Marcelo Fiore and Dmitrij Szamozvancev. 2022. Formal Metatheory
of Second-Order Abstract Syntax. Proc. ACM Program. Lang. 6, POPL,
Article 53 (jan 2022), 29 pages. https://doi.org/10.1145/3498715

[4] G.P. Huet. 1975. A unification algorithm for typed 𝜆-calculus.Theoret-
ical Computer Science 1, 1 (1975), 27–57. https://doi.org/10.1016/0304-
3975(75)90011-0

1such as implemented in the bound package, available at http://hackage.
haskell.org/package/bound
2see https://github.com/rzk-lang/rzk/tree/v0.1.0#readme

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.1145/3498715
https://doi.org/10.1016/0304-3975(75)90011-0
https://doi.org/10.1016/0304-3975(75)90011-0
http://hackage.haskell.org/package/bound
http://hackage.haskell.org/package/bound
https://github.com/rzk-lang/rzk/tree/v0.1.0#readme

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

[5] Nikolai Kudasov. 2022. Functional Pearl: Dependent type inference
via free higher-order unification. arXiv:2204.05653 [cs.LO]

[6] Nikolai Kudasov. 2023. E-Unification for Second-Order Abstract Syn-
tax. In 8th International Conference on Formal Structures for Com-
putation and Deduction (FSCD 2023) (Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 260), Marco Gaboardi and Femke
van Raamsdonk (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik, Dagstuhl, Germany, 10:1–10:22. https://doi.org/10.4230/
LIPIcs.FSCD.2023.10

[7] Conor McBride. 2004. Epigram: Practical Programming with
Dependent Types. In Proceedings of the 5th International Confer-
ence on Advanced Functional Programming (Tartu, Estonia) (AFP’04).
Springer-Verlag, Berlin, Heidelberg, 130–170. https://doi.org/10.
1007/11546382_3

[8] Dale Miller. 1991. A logic programming language with lambda-
abstraction, function variables, and simple unification. In Extensions
of Logic Programming, Peter Schroeder-Heister (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 253–281.
[9] Tim Sheard. 2001. Generic Unification via Two-Level Types and Pa-

rameterized Modules - Functional Pearl. Sigplan Notices - SIGPLAN
36 (10 2001), 86–97. https://doi.org/10.1145/507546.507648

[10] Wayne Snyder. 1990. Higher order E-unification. In 10th International
Conference on Automated Deduction, Mark E. Stickel (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 573–587.

[11] Wouter Swierstra. 2008. Data types à la carte. Journal of Func-
tional Programming 18, 4 (2008), 423–436. https://doi.org/10.1017/
S0956796808006758

[12] Janis Voigtländer. 2008. Asymptotic Improvement of Computa-
tions over Free Monads. 388–403. https://doi.org/10.1007/978-3-540-
70594-9_20

[13] Nicolas Wu and Tom Schrijvers. 2015. Fusion for Free. In Mathemat-
ics of Program Construction, Ralf Hinze and Janis Voigtländer (Eds.).
Springer International Publishing, Cham, 302–322.

2

https://arxiv.org/abs/2204.05653
https://doi.org/10.4230/LIPIcs.FSCD.2023.10
https://doi.org/10.4230/LIPIcs.FSCD.2023.10
https://doi.org/10.1007/11546382_3
https://doi.org/10.1007/11546382_3
https://doi.org/10.1145/507546.507648
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1007/978-3-540-70594-9_20
https://doi.org/10.1007/978-3-540-70594-9_20

	Abstract
	References

